Mathematics in Engineering (Jun 2023)
Fractional KPZ equations with fractional gradient term and Hardy potential
Abstract
In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem $ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\lambda \dfrac{u}{|x|^{2s}}+ (\mathfrak{F}(u)(x))^p+ \rho f & \text{ in } \Omega,\\ u&>&0 & \text{ in }\Omega,\\ u& = &0 & \text{ in }(\mathbb{R}^N\setminus\Omega), \end{array}\right. $ where $ \Omega\subset \mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \infty $ and $ 0 < \lambda < \Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \mathfrak{F}(u) $ is a nonlocal "gradient" term. In particular, if $ \mathfrak{F}(u)(x) = |(-\Delta)^{\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\lambda, s) $ such that: 1) if $ p > p_{+}(\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.
Keywords