He jishu (Jan 2024)

Quantitative determination of UF3 in LiF-BeF2 molten salt system based on XRD internal standard method

  • XU Shizhuan,
  • CHEN Jian,
  • ZOU Jinzhao,
  • WANG Peng,
  • CAO Changqing,
  • LIN Jun

DOI
https://doi.org/10.11889/j.0253-3219.2024.hjs.47.010605
Journal volume & issue
Vol. 47, no. 1
pp. 141 – 152

Abstract

Read online

BackgroundThe conversion of UF6, which is a primary nuclear product, to UF4 in fluoride molten salt phase is expected to be used in the preparation or reconstitution of nuclear fuel salt for molten salt reactors, thus simplifying the process of molten salt reactor fuel production. Determination of the concentration of the key intermediate UF3 plays an important role in obtaining the reaction parameters.PurposeThis study aims to establish a method for measuring UF3 concentration in solid fluoride molten salts.MethodsThe X-ray diffraction (XRD) was employed to test the homemade standards and obtain the internal standard curve of UF3. Firstly, the α-Al2O3 was taken as the internal standard to obtain the XRD peak height internal standard curve (R=0.986) and peak area internal standard curve of LiF-BeF2-UF3 molten salt. Then, these two internal standard curves were applied to measuring the known content of LiUF5 and UF3 solid mixed samples to compare their accuracies. Finally, measurements were conducted on rapidly cooled LiF-BeF2-UF3 solid molten salt samples and naturally cooled LiF-BeF2-UF3-LiUF5 solid molten salt samples to evaluate the stability and accuracy of the curve, and the relative error was obtained.ResultsIn the UF3 concentration range of 1.00~10.00 wt%, the correlation coefficient of the internal standard curve based on the peak area determined for of LiF-BeF2-UF3 molten salt is 0.995. Measuring results of solid mixed samples of LiUF5 and UF3 with known concentrations indicate that the peak area internal standard curve achieves better accuracy with a relative measurement error of no more than 8.7%. In addition, the results of the same content samples with different cooling methods confirm the good stability and accuracy of the proposed method with less than 5.4% relative standard deviation.ConclusionsThe established method can be used for the quantitative analysis of solid LiF-BeF2-UF3 and LiF-BeF2-UF3-LiUF5 molten salts with good measurement accuracy and repeatability.

Keywords