Frontiers in Neurorobotics (Apr 2022)

The Neurorobotics Platform Robot Designer: Modeling Morphologies for Embodied Learning Experiments

  • Benedikt Feldotto,
  • Fabrice O. Morin,
  • Alois Knoll

DOI
https://doi.org/10.3389/fnbot.2022.856727
Journal volume & issue
Vol. 16

Abstract

Read online

The more we investigate the principles of motion learning in biological systems, the more we reveal the central role that body morphology plays in motion execution. Not only does anatomy define the kinematics and therefore the complexity of possible movements, but it now becomes clear that part of the computation required for motion control is offloaded to body dynamics (a phenomenon referred to as “Morphological Computation.”) Consequentially, a proper design of body morphology is essential to carry out meaningful simulations on motor control of robotic and musculoskeletal systems. The design should not be fixed for simulation experiments beforehand, but is a central research aspect in every motion learning experiment that requires continuous adaptation during the experimental phase. We herein introduce a plugin for the 3D modeling suite Blender that enables researchers to design morphologies for simulation experiments in, particularly but not restricted to, the Neurorobotics Platform. We include design capabilities for both musculoskeletal bodies, as well as robotic systems in the Robot Designer. Thereby, we hope to not only foster understanding of biological motions and enabling better robot designs, but enabling true Neurorobotic experiments that may consist of biomimetic models such as tendon-driven robot as a mix of both or a transition between both biology and technology. This plugin helps researchers design and parameterize models with a Graphical User Interface and thus simplifies and speeds up the overall design process.

Keywords