Acta Didactica Norden (Dec 2021)
Lærerstudenters bruk av Monte Carlo-simulering for å løse oppgaver om sannsynlighet: En analyse av 16 gruppebesvarelser
Abstract
Programmering er tatt inn i den nye læreplanen for matematikk i grunnskolen i Norge. Det betyr at lærerstudenter har behov for å få erfaring med å løse matematiske problemer gjennom programmering. I matematikkfaget på lærerutdanninga for 1.–7. trinn ble det laga et undervisningsopplegg som omfatta opplæring i sannsynlighet og Monte Carlo-simulering med programmering i Excel med Visual Basic for Applications (VBA). Arbeidskravet innebar bruk av Monte Carlo-simulering for å løse Chevalier de Méré-problemet og Monty Hall-problemet. I etterkant av studentenes arbeid ble det utforma en NSD-godkjent studie. Utvalget i denne studien er 16 studentgruppers besvarelser på arbeidskravet knytta til dette undervisningsopplegget innen dataprogrammering i matematikkfaget. Et funn fra studien er at småfeil kan skape store problemer ettersom mange studenter ikke klarer å vurdere hvor fornuftige de svarene programmet gir er. I tillegg gir manglende systematikk feilsvar. Men i de tilfellene der studentene klarer å programmere rett, hjelpes de til å løse Chevalier de Méré-problemet. Vi finner også at studentene kan få hjelp av manuell Monte Carlo-simulering for å løse Monty Hall-problemet, gitt at denne gir tallverdier som ligger nært forventningsverdien (p = 2/3), mens i de tilfellene hvor tallverdiene ligger langt unna forventningsverdien kan det virke forvirrende. Det er fordeler og ulemper med både manuell og digital Monte Carlo-simulering, og det ser ut til at lærerstudenter kan ha nytte av å løse oppgaver ved hjelp av begge metoder. For å få det beste læringsutbyttet er det avgjørende at læreren velger gode og relevante oppgaver, som gjør at studentene både ser nytten av simuleringa, og også har en viss mulighet til å kontrollere svaret, slik at ikke tilfeldighet under simuleringa og programmeringsfeil bidrar til forvirring.
Keywords