Journal of Mathematical Cryptology (May 2021)
Constructing Cycles in Isogeny Graphs of Supersingular Elliptic Curves
Abstract
Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽p2, if an imaginary quadratic order O can be embedded in End(E) and a prime L splits into two principal ideals in O, we construct loops or cycles in the supersingular L-isogeny graph at the vertices which are next to j(E) in the supersingular ℓ-isogeny graph where ℓ is a prime different from L. Next, we discuss the lengths of these cycles especially for j(E) = 1728 and 0. Finally, we also determine an upper bound on primes p for which there are unexpected 2-cycles if ℓ doesn’t split in O.
Keywords