Sediment Grain-Size Composition in the Permafrost Region of the Greater Khingan Range and Its Significance as a Material Source
Lixin Liu,
Shuying Zang,
Xiaodong Wu,
Rui Liu,
Tianrui Li,
Jiaju Zhu,
Li Sun,
Shaoqiang Wu,
Xingfeng Dong,
Zihao Zhang
Affiliations
Lixin Liu
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Shuying Zang
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Xiaodong Wu
Qinghai-Tibet Plateau Cryosphere Observation and Research Station, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Rui Liu
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Tianrui Li
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Jiaju Zhu
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Li Sun
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Shaoqiang Wu
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Xingfeng Dong
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Zihao Zhang
Heilongjiang Provincial Key Laboratory of Geographic Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Sediment grain-size distribution (GSD) provides rich information about sedimentary sources and can potentially do the same with regard to environmental and climatic changes. However, neither traditional descriptive statistics nor curving-fitting methods can fully address its complexity. We selected the Greater Khingan Range in northeastern China as the study area and used parameterized end-member analysis (EMA) of the GSD of four drilling cores to extract different end-member (EM) components. The results show that EM1 (mode particle size (Mo): 1.26–1.66 μm) originates from weathering and pedogenesis. The EMs with Mo values of 4.37–5.01 μm represent components transported by the upper westerly wind. EMs with Mo values of 7.58 μm and 11.48 μm represent wet dust deposition and dry dust deposition. The wind transport of particles in winter consists of low-level near-source transport and local-source transport (possibly from the flood plain of the Amur River). Due to the limitations of the EM model, the two sources have one or two EM components: AEM3 + AEM4, BEM3 + BEM4, CEM4, and DEM4. DEM5 is the only large particle-size component and may represent coarse-grained detritus generated via rock weathering. The components related to the winter monsoon and the 14C dating data suggest a weak-strong-weak-strong trend of the winter monsoon since the Marine Isotope Stage 3a (MIS 3a). Our results suggest that the strengthening of the winter monsoons in the previous few thousand years has caused the transportation of coarser grain sizes and further exacerbated permafrost degradation, providing a scientific reference for understanding climate change and the formation and evolution of permafrost in the Greater Khingan Mountains since the MIS 3a.