Journal of Medical Sciences (Jan 2017)

Effects of isolation rearing and early antipsychotic intervention on oxidative stress-induced apoptosis and brain-derived neurotrophic factor in hippocampus in a rat model of schizophrenia

  • Szu-Nian Yang,
  • Yu-Yin Yang,
  • Fang-Jung Wan,
  • Chuen-Lin Huang,
  • Yia-Ping Liu

DOI
https://doi.org/10.4103/jmedsci.jmedsci_113_16
Journal volume & issue
Vol. 37, no. 4
pp. 155 – 162

Abstract

Read online

Background: Oxidative stress-induced neuronal dysfunction has been considered an essential factor for the development of schizophrenia. However, a longitudinal and causal relation between the impacts of developmental stress and oxidative stress remains unsolved. The present study aimed to examine whether the oxidative stress-relevant dysfunctions of the apoptotic index can be induced in rats of isolation rearing (IR, a rodent model of schizophrenia) and to see if the intervention of antipsychotics can reverse these dysfunctions. Materials and Methods: Pharmacological manipulation (risperidone [RIS] [1 mg/kg/day], olanzapine [OLA] [2.5 mg/kg/day], or saline [SAL] vehicle) was introduced 4 weeks (adolescence) or 8 weeks (young adulthood) after IR (i.e., rats were 7- or 11-week-old). The regime of RIS, OLA, or SAL was continued for 9 weeks. Locomotor activity was employed to validate the IR effect. Rats' hippocampus immediately after sacrifice was removed to measure messenger RNA expression of Bax, Bcl-2, brain-derived neurotrophic factor (BDNF) and the plasma level of nitric oxide (NO). Results: The results showed: (i) IR rats were more hyperactive. (ii) RIS may exert anti-apoptotic effects on IR rats, particularly at their adolescent age (as indexed by increased Bcl-2 and decreased Bax/Bcl-2 ratio). (iii) The therapeutic potential of RIS can be also observed in the change of BDNF in an age-independent manner, in which RIS effectively increased the BDNF level in IR but not social (SOC) rats. (iv) Plasma NO was not altered. Conclusion: The study results support the utility of the IR paradigm in exploring mental disorders with neurodevelopmental origin in which early pharmacological intervention may provide a therapeutic benefit in the overloaded oxidative stress and the dysfunction of BDNF.

Keywords