Polymers (Nov 2022)

Non-Isocyanate Polyurethane Bio-Foam with Inherent Heat and Fire Resistance

  • Dallin L. Smith,
  • Danixa Rodriguez-Melendez,
  • Sidney M. Cotton,
  • Yufeng Quan,
  • Qingsheng Wang,
  • Jaime C. Grunlan

DOI
https://doi.org/10.3390/polym14225019
Journal volume & issue
Vol. 14, no. 22
p. 5019

Abstract

Read online

Polyurethanes (PUs) are versatile and widespread, particularly as flexible and rigid foams. To avoid isocyanates and other toxic reagents required for synthesis, such as phosgene, alternative synthetic routes have been utilized to produce non-isocyanate polyurethanes (NIPUs). A thermally and flame-resistant rigid NIPU was produced from environmentally benign and bio-sourced ingredients, requiring no catalyst or solvents. A foamed structure was obtained by the addition of glutaraldehyde and four different carboxylic acids: malic acid, maleic acid, citric acid, and aconitic acid. The resulting morphology, thermal degradation, and flame resistance of each foam were compared. The properties vary with each carboxylic acid used, but in each case, peak thermal degradation and peak heat release are postponed by >100 °C compared to commercial rigid PU foam. Furthermore, in a butane torch test, NIPU foams exhibit an 80% higher remaining mass and a 75% reduction in afterburn time, compared to commercial polyurethane. This bio-based polyurethane eliminates the hazards of traditional PUs, while imparting inherent thermal stability and flame resistance uncharacteristic of conventional foams.

Keywords