Results in Engineering (Sep 2022)

Photocatalytic performance of N–TiO2@SiO2 composite obtained under gliding arc plasma processing at atmospheric pressure

  • Voufouo Anne Suzie,
  • Tarkwa Jean-Baptiste,
  • Acayanka Elie,
  • Momeni Natacha,
  • Nzali Serge,
  • Kamgang Youbi Georges,
  • Laminsi Samuel

Journal volume & issue
Vol. 15
p. 100516

Abstract

Read online

Photocatalysis is becoming ubiquitous in the chemical industry because of its positive impact on the cost of operations. Nevertheless, a good photocatalyst must meet the properties of good reactivity, high selectivity, long-term stability, low toxicity, and cost-effectiveness but should also promote a photo-generated charge carriers separation. In this work, a homemade supported catalyst is obtained through low-temperature plasma exposure of the precursor TiCl3/glass powder to promote better handling, high particle dispersion, and easy recovery. Because such a plasma is a strongly oxidative medium containing mainly radicals (•OH and NO•), the mixture exposition induces the formation of N–TiO2 nanoparticles immobilized in-situ onto the glass matrix to form a photo-active hetero-structure that improves the charge carriers separation overcoming the rapid recombination drawback. The resulting material was characterized by XRD, FTIR, and SEM techniques. The resilient stability after 5 successive cycles, makes this composite a promising alternative photocatalyst for various applications. The photocatalytic degradation yields reached 52, 72, 60, and 80% within 1 h of plasma irradiation and 45, 43, 22, and 25% after 6 h of daylight illumination, respectively for Rhodamine 6G, Floxina B, Ceftriaxone, and Ampicillin. The discrepancy in degradation yields is more related to the intrinsic chemical structure of each contaminant.

Keywords