Computational and Structural Biotechnology Journal (Jan 2023)

Consistencies and contradictions in different polymer models of chromatin architecture

  • Amanda Souza Câmara,
  • Martin Mascher

Journal volume & issue
Vol. 21
pp. 1084 – 1091

Abstract

Read online

Genetic information is stored in very long DNA molecules, which are folded to form chromatin, a similarly long polymer fibre that is ultimately organised into chromosomes. The organisation of chromatin is fundamental to many cellular functions, from the expression of the genetic information to cell division. As a long polymer, chromatin is very flexible and may adopt a myriad of shapes. Globally, the polymer physics governing chromatin dynamics is very well understood. But chromatin is not uniform and regions of it, with chemical modifications and bound effectors, form domains and compartments through mechanisms not yet clear. Polymer models have been successfully used to investigate these mechanisms to explain cytological observations and build hypothesis for experimental validation. Many different approaches to conceptualise chromatin in polymer models can be envisioned and each reflects different aspects. Here, we compare recent approaches that aim at reproducing prominent features of interphase chromatin organisation: the compartmentalisation into eu- and heterochromatin compartments, the formation of a nucleolus, chromatin loops and the rosette and Rabl conformations of interphase chromosomes. We highlight commonalities and contradictions that point to a modulation of the mechanisms involved to fine degree. Consolidating models will require the inclusion of yet hidden or neglected parameters.

Keywords