Communications Chemistry (Aug 2024)
Conjugated bis(enaminones) as effective templates for rotaxane assembly and their post-synthetic modifications
Abstract
Abstract The development of efficient methods for the synthesis of mechanically interlocked compounds is currently considered a major challenge in supramolecular chemistry. Twofold vinylogous fumaramides, a class of conjugated bis(enaminones), successfully achieve the assembly of hydrogen-bonded amide-based rotaxanes, with a templating ability comparable to that of their parent fumaramide-based systems, showcasing full conversions and impressive yields up to 92%. Computational calculations offer a compelling explanation for the remarkable efficiency of these bis(enaminones) in driving the synthesis of unprecedented rotaxanes. The reactivity of these interlocked species was thoroughly investigated, revealing that a one-step double stopper-exchange process can be successfully performed while preserving the mechanical bond. This approach facilitates the formation of controllable rotaxanes, including a three-station molecular shuttle, whose assembly via a clipping methodology is highly unselective. The internal translational motion of this latter species has been successfully controlled in a reversible way by means of a cycloaddition/retrocycloaddition sequence.