Integrative Transcriptomic and Metabolic Analyses Reveal That Flavonoid Biosynthesis Is the Key Pathway Regulating Pigment Deposition in Naturally Brown Cotton Fibers
Shandang Shi,
Rui Tang,
Xiaoyun Hao,
Shouwu Tang,
Wengang Chen,
Chao Jiang,
Mengqian Long,
Kailu Chen,
Xiangxiang Hu,
Quanliang Xie,
Shuangquan Xie,
Zhuang Meng,
Asigul Ismayil,
Xiang Jin,
Fei Wang,
Haifeng Liu,
Hongbin Li
Affiliations
Shandang Shi
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Rui Tang
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Xiaoyun Hao
Rural Energy and Environment Workstation of Yili State, Yining 835000, China
Shouwu Tang
China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
Wengang Chen
China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
Chao Jiang
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Mengqian Long
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Kailu Chen
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Xiangxiang Hu
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Quanliang Xie
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Shuangquan Xie
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Zhuang Meng
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Asigul Ismayil
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Xiang Jin
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
Fei Wang
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Haifeng Liu
China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
Hongbin Li
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
Brown cotton is a major cultivar of naturally colored cotton, and brown cotton fibers (BCFs) are widely utilized as raw materials for textile industry production due to their advantages of being green and dyeing-pollution-free. However, the mechanisms underlying the pigmentation in fibers are still poorly understood, which significantly limits their extensive applications in related fields. In this study, we conducted a multidimensional comparative analysis of the transcriptomes and metabolomes between brown and white fibers at different developmental periods to identify the key genes and pathways regulating the pigment deposition. The transcriptomic results indicated that the pathways of flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched regulatory pathways, especially in the late development periods of fiber pigmentation; furthermore, the genes distributed in the pathways of PAL, CHS, F3H, DFR, ANR, and UFGT were identified as significantly up-regulated genes. The metabolic results showed that six metabolites, namely (−)-Epigallocatechin, Apiin, Cyanidin-3-O-glucoside, Gallocatechin, Myricetin, and Poncirin, were significantly accumulated in brown fibers but not in white fibers. Integrative analysis of the transcriptomic and metabolomic data demonstrated a possible regulatory network potentially regulating the pigment deposition, in which three MYB transcription factors promote the expression levels of flavonoid biosynthesis genes, thereby inducing the content increase in (−)-Epigallocatechin, Cyanidin-3-O-glucoside, Gallocatechin, and Myricetin in BCFs. Our findings provide new insights into the pigment deposition mechanism in BCFs and offer references for genetic engineering and breeding of colored cotton materials.