Journal of Fungi (Jun 2022)

Elicitor-Induced Metabolomics Analysis of <i>Halodule pinifolia</i> Suspension Culture for an Alternative Antifungal Screening Approach against <i>Candida albicans</i>

  • Mousa A. Alghuthaymi,
  • Jeyapragash Danaraj,
  • Fawziah M. Albarakaty,
  • Rajiv Periakaruppan,
  • Manigandan Vajravelu,
  • Saravanakumar Ayyappan,
  • Kumaralingam Selvaraj,
  • Kamel A. Abd-Elsalam

DOI
https://doi.org/10.3390/jof8060609
Journal volume & issue
Vol. 8, no. 6
p. 609

Abstract

Read online

Elicitors are the agents that stimulate the defense responses of plants, and accumulate specialized metabolites in plant tissue culture. This study investigated the elicitor-feeding response of H. pinifolia suspension cell cultures (SCC) for metabolomics analysis and screening of specialized compounds against Candida albicans. Methyl jasmonate (MeJA) was used as an elicitor, and treatment of SCC at a concentration of 20 µM MeJA resulted in the maximum rosmarinic acid (RA) accumulation (117 mg/g dry weight), with transcript levels of RA biosynthetic genes HpPAL, HpC4H, and Hp4CL being 4.2, 2.5, and 3.7-fold higher, respectively, than the controls. GC-MS-based metabolomics analysis revealed a total of 47 metabolites, including 30 organic acids, six amino acids, six flavonoids, two sugars, two plant growth regulators, and one vitamin, which were significantly different between control and MeJA-treated cells. Furthermore, five phenolic acids were discovered at higher concentrations, including p-anisic acid, p-coumaric acid, caffeic acid, vanillic acid, and rosmarinic acid, and were purified and structurally elucidated for alternative antifungal screening against C. albicans and the evaluation of ADMET properties. The results from antifungal screening revealed that RA at MIC of 31.25 mg/L exhibited the lowest growth percentage of C. albicans (1.99%), with higher inhibition of isocitrate lyase 1 (ICL 1) enzyme (93.1%), followed by p-anisic acid (86.2%) and caffeic acid (85.1%), respectively. The drug likeliness and ADMET properties of RA exhibited promising results, with a bioactivity score of 0.57, 0.15, and 0.24 for nuclear receptor ligand, protease inhibitor, and enzyme inhibitor, respectively. Therefore, MeJA appears to have a significant effect on enhanced RA accumulation in H. pinifoia cells with phenylpropanoid transcript expression, and acts as an ICL1 inhibitor of C. albicans.

Keywords