Journal of Materials Research and Technology (Sep 2023)

Hot isostatic pressing and heat treatments of LPBFed CoCuFeMnNiTi0.13 high-entropy alloy: microstructure and mechanical properties

  • J. Fiocchi,
  • C.A. Biffi,
  • M. Elnemr,
  • J. Shipley,
  • A. Tuissi,
  • R. Casati

Journal volume & issue
Vol. 26
pp. 9127 – 9138

Abstract

Read online

The present work explores the possibility of processing a CoCuFeMnNiTi0.13 high-entropy alloy by laser powder bed fusion (LPBF). The alloy, produced under optimised processing conditions, presents good densification but also hot cracks, caused by the liquation of an inter-dendritic Cu-rich phase. Microstructure of the as-built alloy is characterised by face centred cubic (FCC) columnar grains, containing Cu-poor dendrites and Cu-rich inter-dendritic areas. The alloy, which was designed to be strengthened by spinodal decomposition and precipitation, was subjected to different thermo-mechanical treatments to try and improve its properties. Direct ageing and solution treatment and ageing produced a strong but brittle material (tensile strength of 683 MPa and elongation to failure of 1.3%), whereas hot isostatic pressing followed by controlled cooling was able to heal pores and cracks while triggering the desired microstructural transformations (spinodal decomposition and precipitation). This resulted into a balanced set of mechanical properties (tensile strength of 473 MPa and elongation to failure of 7.6%). This work shows that proper post-processing can mitigate the issues typically affecting LPBF fabricated HEAs, producing tailored microstructures with satisfactory mechanical performances.

Keywords