Journal of Cheminformatics (Aug 2021)

GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data

  • Guannan Liu,
  • Manali Singha,
  • Limeng Pu,
  • Prasanga Neupane,
  • Joseph Feinstein,
  • Hsiao-Chun Wu,
  • J. Ramanujam,
  • Michal Brylinski

DOI
https://doi.org/10.1186/s13321-021-00540-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Traditional techniqueset identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation p to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug targrotocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drug-target interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through off-target binding, and repositioning opportunities.

Keywords