Journal of Advanced Ceramics (Apr 2022)

A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells

  • Yangsen Xu,
  • Xi Xu,
  • Lei Bi

DOI
https://doi.org/10.1007/s40145-022-0573-7
Journal volume & issue
Vol. 11, no. 5
pp. 794 – 804

Abstract

Read online

Abstract A high-entropy ceramic oxide is used as the cathode for the first time for proton-conducting solid oxide fuel cells (H-SOFCs). The Fe0.6Mn0.6Co0. 6Ni0.6Cr0.6O4 (FMCNC) high-entropy spinel oxide has been successfully prepared, and the in situ chemical stability test demonstrates that the FMCNC material has good stability against CO2. The first-principles calculation indicates that the high-entropy structure enhances the properties of the FMCNC material that surpasses their individual components, leading to lower O2 adsorption energy for FMCNC than that for the individual components. The H-SOFC using the FMCNC cathode reaches an encouraging peak power density (PPD) of 1052 mW·cm−2 at 700 °C, which is higher than those of the H-SOFCs reported recently. Additional comparison was made between the high-entropy FMCNC cathode and the traditional Mn1. 6Cu1.4O4 (MCO) spinel cathode without the high-entropy structure, revealing that the formation of the high-entropy material allows the enhanced protonation ability as well as the movement of the O p-band center closer to the Fermi level, thus improving the cathode catalytic activity. As a result, the high-entropy FMCNC has a much-decreased polarization resistance of 0.057 Ω·cm2 at 700 °C, which is half of that for the traditional MCO spinel cathode without the high-entropy design. The excellent performance of the FMCNC cell indicates that the high-entropy design makes a new life for the spinel oxide as the cathode for H-SOFCs, offering a novel and promising route for the development of high-performance materials for H-SOFCs.

Keywords