Nature Communications (Sep 2024)

IL-2 delivery to CD8+ T cells during infection requires MRTF/SRF-dependent gene expression and cytoskeletal dynamics

  • Diane Maurice,
  • Patrick Costello,
  • Jessica Diring,
  • Francesco Gualdrini,
  • Bruno Frederico,
  • Richard Treisman

DOI
https://doi.org/10.1038/s41467-024-52230-8
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Paracrine IL-2 signalling drives the CD8 + T cell expansion and differentiation that allow protection against viral infections, but the underlying molecular events are incompletely understood. Here we show that the transcription factor SRF, a master regulator of cytoskeletal gene expression, is required for effective IL-2 signalling during L. monocytogenes infection. Acting cell-autonomously with its actin-regulated cofactors MRTF-A and MRTF-B, SRF is dispensible for initial TCR-mediated CD8+ T cell proliferation, but is required for sustained IL-2 dependent CD8+ effector T cell expansion, and persistence of memory cells. Following TCR activation, Mrtfab-null CD8+ T cells produce IL-2 normally, but homotypic clustering is impaired both in vitro and in vivo. Expression of cytoskeletal structural and regulatory genes, most notably actins, is defective in Mrtfab-null CD8+ T cells. Activation-induced cell clustering in vitro requires F-actin assembly, and Mrtfab-null cell clusters are small, contain less F-actin, and defective in IL-2 retention. Clustering of Mrtfab-null cells can be partially restored by exogenous actin expression. IL-2 mediated CD8+ T cell proliferation during infection thus depends on the control of cytoskeletal dynamics and actin gene expression by MRTF-SRF signalling.