Forum of Mathematics, Sigma (Jan 2023)
Homological Bondal-Orlov localization conjecture for rational singularities
Abstract
Given a resolution of rational singularities $\pi \colon {\tilde {X}} \to X$ over a field of characteristic zero, we use a Hodge-theoretic argument to prove that the image of the functor ${\mathbf {R}}\pi _*\colon {\mathbf {D}}^{\mathrm {b}}({\tilde {X}}) \to {\mathbf {D}}^{\mathrm {b}}(X)$ between bounded derived categories of coherent sheaves generates ${\mathbf {D}}^{\mathrm {b}}(X)$ as a triangulated category. This gives a weak version of the Bondal–Orlov localization conjecture [BO02], answering a question from [PS21]. The same result is established more generally for proper (not necessarily birational) morphisms $\pi \colon {\tilde {X}} \to X$ , with ${\tilde {X}}$ smooth, satisfying ${\mathbf {R}}\pi _*({\mathcal {O}}_{\tilde {X}}) = {\mathcal {O}}_X$ .
Keywords