Polymers (Oct 2019)

pH-Responsive Carboxymethylcellulose Nanoparticles for <sup>68</sup>Ga-WBC Labeling in PET Imaging

  • Anna Maria Piras,
  • Angela Fabiano,
  • Stefania Sartini,
  • Ylenia Zambito,
  • Simona Braccini,
  • Federica Chiellini,
  • Angela G. Cataldi,
  • Francesco Bartoli,
  • Ana de la Fuente,
  • Paola Anna Erba

DOI
https://doi.org/10.3390/polym11101615
Journal volume & issue
Vol. 11, no. 10
p. 1615

Abstract

Read online

Carboxymethylcellulose (CMC) is a well-known pharmaceutical polymer, recently gaining attention in the field of nanomedicine, especially as a polyelectrolyte agent for the formation of complexes with oppositely charged macromolecules. Here, we report on the application of pH-sensitive pharmaceutical grade CMC-based nanoparticles (NP) for white blood cells (WBC) PET imaging. In this context and as an alternative to 99mTc-HMPAO SPECT labeling, the use of 68Ga3+ as PET radionuclide was investigated since, at early time points, it could provide the greater spatial resolution and patient convenience of PET tomography over SPECT clinical practices. Two operator-friendly kit-type formulations were compared, with the intention of radiolabeling within a short time (10 min), under mild conditions (physiological pH, room temperature) and in agreement with the actual clinically applied guidelines. NP were labeled by directly using 68Ga3+ eluted in HCL 0.05 N, from hospital suited 68Ge/68Ga generator and in absence of chelator. The first kit type approach involved the application of 68Ga3+ as an ionotropic gelation agent for in-situ forming NP. The second kit type approach concerned the re-hydration of a proper freeze-dried injectable NP powder. pH-sensitive NP with 250 nm average diameter and 80% labeling efficacy were obtained. The NP dispersant medium, including a cryoprotective agent, was modulated in order to optimize the Zeta potential value (−18 mV), minimize the NP interaction with serum proteins and guarantee a physiological environment for WBC during NP incubation. Time-dependent WBC radiolabeling was correlated to NP uptake by using both confocal and FT-IR microscopies. The ready to use lyophilized NP formulation approach appears promising as a straightforward 68Ga-WBC labeling tool for PET imaging applications.

Keywords