Journal of Function Spaces (Jan 2020)
Pre-Quasi Simple Banach Operator Ideal Generated by s−Numbers
Abstract
Let E be a weighted Nakano sequence space or generalized Cesáro sequence space defined by weighted mean and by using s−numbers of operators from a Banach space X into a Banach space Y. We give the sufficient (not necessary) conditions on E such that the components SEX,Y≔T∈LX,Y:snTn=0∞∈E of the class SE form pre-quasi operator ideal, the class of all finite rank operators are dense in the Banach pre-quasi ideal SE, the pre-quasi operator ideal formed by the sequence of approximation numbers is strictly contained for different weights and powers, the pre-quasi Banach Operator ideal formed by the sequence of approximation numbers is small, and finally, the pre-quasi Banach operator ideal constructed by s−numbers is simple Banach space.