Scientific Reports (Jul 2017)

Planar binary-phase lens for super-oscillatory optical hollow needles

  • Gang Chen,
  • Zhixiang Wu,
  • Anping Yu,
  • Kun Zhang,
  • Jing Wu,
  • Luru Dai,
  • Zhongquan Wen,
  • Yinghu He,
  • Zhihai Zhang,
  • Senlin Jiang,
  • Changtao Wang,
  • Xiangang Luo

DOI
https://doi.org/10.1038/s41598-017-05060-2
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Optical hollow beams are suitable for materials processing, optical micromanipulation, microscopy, and optical lithography. However, conventional optical hollow beams are diffraction-limited. The generation of sub-wavelength optical hollow beams using a high numerical aperture objective lens and pupil filters has been theoretically proposed. Although sub-diffraction hollow spot has been reported, nondiffracting hollow beams of sub-diffraction transverse dimensions have not yet been experimentally demonstrated. Here, a planar lens based on binary-phase modulation is proposed to overcome these constraints. The lens has an ultra-long focal length of 300λ. An azimuthally polarized optical hollow needle is experimentally demonstrated with a super-oscillatory transverse size (less than 0.38λ/NA) of 0.34λ to 0.42λ, where λ is the working wavelength and NA is the lens numerical aperture, and a large depth of focus of 6.5λ. For a sub-diffraction transverse size of 0.34λ to 0.52λ, the nondiffracting propagation distance of the proposed optical hollow needle is greater than 10λ. Numerical simulation also reveals a good penetrability of the proposed optical hollow needle at an air-water interface, where the needle propagates through water with a doubled propagation distance and without loss of its super-oscillatory property. The proposed lens is suitable for nanofabrication, optical nanomanipulation, super-resolution imaging, and nanolithography applications.