Applied Sciences (Mar 2020)
Crab Bioturbation and Seasonality Control Nitrous Oxide Emissions in Semiarid Mangrove Forests (Ceará, Brazil)
Abstract
Seasonality and crab activity affects the nutrients and physicochemical parameters in mangrove soils, thus, affecting the emissions of greenhouse gases, such as nitrous oxide (N2O). Climate change may intensify rainfall and/or enhance droughts, affecting mangroves and associated biota. Crabs are natural soil bioturbators responsible for soil aeration and turnover. We evaluated the effect of Ucides cordatus crab on N2O emissions from mangrove soils under a semiarid climate in Northeastern Brazil. Soil and gas samples were collected over the rainy and dry seasons in crab-naturally-bioturbated and crab-exclusion mangrove plots. We measured the soil’s pH, redox potential, and the total contents of carbon, nitrogen, and sulfur. We found higher N2O emissions in the crab-exclusion sites compared to the bioturbated sites, as well as higher N2O emissions in the rainy season compared to the dry season. The fluxes of N2O (µg m−2 h−1) were 47.3 ± 9.7 and 8.9 ± 0.5 for the crab-exclusion sites, and 36.5 ± 7.8 and 4.5 ± 2.1 for the bioturbated sites (wet and dry seasons, respectively). The soil turning over by macrofauna led to lower N2O fluxes in natural crab-bioturbated areas, and seasonality was the environmental factor that contributed the most to the changes in N2O emissions. Broadly, anthropic activities and seasonality influence nitrogen fate, N2O emissions, and ecological services in coastal ecosystems.
Keywords