Multimodal Technologies and Interaction (Jul 2019)

Graph-Based Prediction of Meeting Participation

  • Gabriel Murray

DOI
https://doi.org/10.3390/mti3030054
Journal volume & issue
Vol. 3, no. 3
p. 54

Abstract

Read online

Given a meeting participant’s turn-taking dynamics during one segment of a meeting, and their contribution to the group discussion up to that point, our aim is to automatically predict their activity level at a later point of the meeting. The predictive models use verbal and nonverbal features derived from social network representations of each small group interaction. The best automatic prediction models consistently outperform two baseline models at multiple time-lags. We analyze which interaction features are most predictive of later meeting activity levels, and investigate the efficacy of the verbal vs. nonverbal feature classes for this prediction task. At long time-lags, linguistic features become more crucial, but performance degrades compared with prediction at short time-lags.

Keywords