Biomedicines (Jan 2023)

C-Terminal p53 Palindromic Tetrapeptide Restores Full Apoptotic Function to Mutant p53 Cancer Cells In Vitro and In Vivo

  • Robert L. Fine,
  • Yuehua Mao,
  • Richard Dinnen,
  • Ramon V. Rosal,
  • Anthony Raffo,
  • Uri Hochfeld,
  • Patrick Senatus,
  • Jeffrey N. Bruce,
  • Gwen Nichols,
  • Hsin Wang,
  • Yongliang Li,
  • Paul W. Brandt-Rauf

DOI
https://doi.org/10.3390/biomedicines11010137
Journal volume & issue
Vol. 11, no. 1
p. 137

Abstract

Read online

We previously demonstrated that a synthetic monomer peptide derived from the C-terminus of p53 (aa 361–382) induced preferential apoptosis in mutant p53 malignant cells, but not normal cells. The major problem with the peptide was its short half-life (half-life His) with purified peptide at 7 µM and 15 µM produced 52% and 75%, cell death, respectively. Comparatively, the monomeric p53 C-terminal peptide-Ant (aa 361–382, termed p53p-Ant), at 15 µM and 30 µM induced 15% and 24% cell death, respectively. Compared to the p53p-Ant, the exogenous 4R-pal-p53p-Ant was over five-fold more potent for inducing apoptosis at an equimolar concentration (15 µM). Endogenous 4R-Pal-p53p expression (without Ant), induced by Dox, resulted in 43% cell death in an engineered MB468 breast cancer stable cell line, while endogenous p53 C-terminal monomeric peptide expression produced no cell death due to rapid peptide degradation. The mechanism of apoptosis from 4R-Pal-p53p involved the extrinsic and intrinsic pathways (FAS, caspase-8, Bax, PUMA) for apoptosis, as well as increasing reactive oxygen species (ROS). All three death pathways were induced from transcriptional/translational activation of pro-apoptotic genes. Additionally, mRNA of p53 target genes (Bax and Fas) increased 14-fold and 18-fold, respectively, implying that the 4R-Pal-p53p restored full apoptotic potential to mutant p53. Monomeric p53p only increased Fas expression without a transcriptional or translational increase in Fas, and other genes and human marrow stem cell studies revealed no toxicity to normal stem cells for granulocytes, erythrocytes, monocytes, and macrophages (CFU-GEMM). Additionally, the peptide specifically targeted pre-malignant and malignant cells with mutant p53 and was not toxic to normal cells with basal levels of WT p53.

Keywords