Journal of Wood Science (Jan 2024)
Determination of nuclear magnetic resonance surface relaxivity for the macropore system from wood cell lumen
Abstract
Abstract To determine the surface relaxivity of pores plays a vital role in the application of time-domain nuclear magnetic resonance (TD-NMR) technology to porous structure characterization for wood. Currently, the surface relaxivity of pores is calibrated using a standard sample with a pore size of the same order as the wood pore system. However, the uniformly distributed pore size of standard sample is unfit to accurately indicate the complexity of porous structure of wood, which significantly affects the accuracy of test results. By integrating the TD-NMR technology with mercury intrusion porosimetry (MIP), the surface relaxivity of macropores in the lumen of wood cells is calibrated in this study using the tested sample, so as to avoid the error in measurement as caused by existing method. Data processing is performed using several mathematical methods including interpolation arithmetic and least square principle. Notably, the node segmentation method is applied to identify the T 2 boundary of pores in cell lumen and to classify the porous structure of cell lumen into different pore systems. The approach proposed in this study is demonstrated to be effective in improving the accuracy of TD-NMR technology for characterizing the porous structure of wood. Also, it contributes a potential solution to accounting for the porous structure of wood based on the phenomenon of pore relaxation, which can improve the understanding of wood pore conformation.
Keywords