Applied Sciences (Aug 2021)

Reduction of Compression Artifacts Using a Densely Cascading Image Restoration Network

  • Yooho Lee,
  • Sang-hyo Park,
  • Eunjun Rhee,
  • Byung-Gyu Kim,
  • Dongsan Jun

DOI
https://doi.org/10.3390/app11177803
Journal volume & issue
Vol. 11, no. 17
p. 7803

Abstract

Read online

Since high quality realistic media are widely used in various computer vision applications, image compression is one of the essential technologies to enable real-time applications. Image compression generally causes undesired compression artifacts, such as blocking artifacts and ringing effects. In this study, we propose a densely cascading image restoration network (DCRN), which consists of an input layer, a densely cascading feature extractor, a channel attention block, and an output layer. The densely cascading feature extractor has three densely cascading (DC) blocks, and each DC block contains two convolutional layers, five dense layers, and a bottleneck layer. To optimize the proposed network architectures, we investigated the trade-off between quality enhancement and network complexity. Experimental results revealed that the proposed DCRN can achieve a better peak signal-to-noise ratio and structural similarity index measure for compressed joint photographic experts group (JPEG) images compared to the previous methods.

Keywords