Regenerative Therapy (Jun 2020)

Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold

  • Ryo Umeyama,
  • Takanori Yamawaki,
  • Dan Liu,
  • Sanshiro Kanazawa,
  • Tsuyoshi Takato,
  • Kazuto Hoshi,
  • Atsuhiko Hikita

Journal volume & issue
Vol. 14
pp. 284 – 295

Abstract

Read online

Introduction: Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.Our group has created a β⁻tricalcium phosphate (β⁻TCP) scaffold by applying 3D printing technology. This scaffold has an arbitrary shape and an internal structure suitable for cell loading, growth, and colonization. The scaffold was coated with a recombinant collagen peptide (RCP) to promote bone replacement.As indicated by several studies, cells loaded to scaffolds promote bone regeneration, especially when they are induced osteoblastic differentiation before transplantation. In this study, culture duration for bone marrow cells was optimized before being loaded to this new scaffold material. Method: Bone marrow cells isolated from C57BL/6J mice were subjected to osteogenic culture for 4, 7, and 14 days. The differentiation status of the cells was examined by alkaline phosphatase staining, alizarin red staining, and real-time RT-PCR for differentiation markers. In addition, the flow of changes in the abundance of endothelial cells and monocytes was analyzed by flow cytometry according to the culture period of bone marrow cells.Next, cells at days 4, 7, and 14 of culture were placed on a β-TCP/RCP scaffold and implanted subcutaneously into the back of C57BL/6J mice. Grafts were harvested and evaluated histologically 8 weeks later. Finally, Cells cultured for 7 days were also transplanted subperiosteally in the skull of the mouse with scaffolds. Result: Alkaline phosphatase staining was most prominent at 7 days, and alizarin red staining was positive at 14 days. Real-time RT-PCR revealed that Runx2 and Alp peaked at 7 days, while expression of Col1a1 and Bglap was highest at 14 days. Flow cytometry indicated that endothelial cells increased from day 0 to day 7, while monocytes increased continuously from day 0 to day 14. When transplanted into mice, the scaffold with cells cultured for 7 days exhibited the most prominent osteogenesis. The scaffold, which was transplanted subperiosteally in the skull, retained its shape and was replaced with regenerated bone over a large area of the field of view. Conclusion: Osteoblasts before full maturation are most efficient for bone regeneration, and the pre-culture period suitable for cells to be loaded onto a β-TCP/RCP hybrid scaffold is approximately 7 days.This β-TCP/RCP hybrid scaffolds will also be useful for bone augmentation.

Keywords