Mathematics (Jan 2020)
Slant Curves in Contact Lorentzian Manifolds with CR Structures
Abstract
In this paper, we first find the properties of the generalized Tanaka−Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the ∇ ^ -geodesic is a magnetic curve (for ∇) along slant curves. Finally, we prove that when c ≤ 0 , there does not exist a non-geodesic slant Frenet curve satisfying the ∇ ^ -Jacobi equations for the ∇ ^ -geodesic vector fields in M. Thus, we construct the explicit parametric equations of pseudo-Hermitian pseudo-helices in Lorentzian space forms M 1 3 ( H ^ ) for H ^ = 2 c > 0 .
Keywords