IEEE Access (Jan 2020)

Aspect-Context Interactive Attention Representation for Aspect-Level Sentiment Classification

  • Zhuojia Wu,
  • Yang Li,
  • Jian Liao,
  • Deyu Li,
  • Xiaoli Li,
  • Suge Wang

DOI
https://doi.org/10.1109/ACCESS.2020.2972697
Journal volume & issue
Vol. 8
pp. 29238 – 29248

Abstract

Read online

Aspect-level sentiment classification aims to determine sentiment polarities of various aspects in reviews, where each review typically contains multiple aspects, that may correspond to different polarities. Aspect-level sentiment classification, unlike document-level sentiment classification, requires different context representations for different aspects. Existing methods normally use Long Short-Term Memory (LSTM) network to model aspects and contexts separately, and they combine attention mechanisms to extract features of a specific aspect in its context. Attention mechanisms are not used for sequence modeling, so aspects are not considered when generating context sequence representations. This study proposes a novel aspect-context interactive representation structure that only relies on an attention mechanism for generating sequence-to-sequence representations in both context and aspect. It is capable of extracting features related to the specific aspect during the process of its context sequence modeling, and generating a high quality aspect representation simultaneously. We have conducted comprehensive experiments to compare with thirteen existing methods. Our experimental results show that the proposed model is able to achieve significantly better performance on Restaurant dataset, as well as very competitive results on Laptop and Twitter datasets.

Keywords