Monitoring Freeze-Damage in Grapefruit by Electric Bioimpedance Spectroscopy and Electric Equivalent Models
David Romero Fogué,
Rafael Masot Peris,
Javier Ibáñez Civera,
Laura Contat Rodrigo,
Nicolas Laguarda-Miro
Affiliations
David Romero Fogué
School of Design Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
Rafael Masot Peris
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València—Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Javier Ibáñez Civera
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València—Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Laura Contat Rodrigo
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València—Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Nicolas Laguarda-Miro
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València—Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Grapefruit is a cold-sensitive citrus fruit, and freezing can spoil the harvest when the fruit is still on the tree and even later during manufacturing and transport due to inappropriate postharvest management. This study performed a specific Electric Impedance Spectroscopy (EIS) analysis and statistical data treatment to obtain an EIS and Artificial Neural Networks (ANN)-based model for early freeze-damage detection in grapefruit showing a Correct Correlation Rate of 100%. Additionally, Cryo-Field Emission Scanning Electron Microscopy observations were conducted on both fresh and frozen/thawed samples, analyzing the different impedance responses in order to understand the biological changes in the tissue. Finally, a modified Hayden electric equivalent model was parameterized to simulate the impedance response electrically and link the electric behavior of biological tissue to the change in its properties due to freezing. The developed technique is introduced as an alternative to the traditional ones, as it is fast, economic, and easy to carry out.