Applied Sciences (Jun 2023)
Combined Bidirectional Long Short-Term Memory with Mel-Frequency Cepstral Coefficients Using Autoencoder for Speaker Recognition
Abstract
Recently, neural network technology has shown remarkable progress in speech recognition, including word classification, emotion recognition, and identity recognition. This paper introduces three novel speaker recognition methods to improve accuracy. The first method, called long short-term memory with mel-frequency cepstral coefficients for triplet loss (LSTM-MFCC-TL), utilizes MFCC as input features for the LSTM model and incorporates triplet loss and cluster training for effective training. The second method, bidirectional long short-term memory with mel-frequency cepstral coefficients for triplet loss (BLSTM-MFCC-TL), enhances speaker recognition accuracy by employing a bidirectional LSTM model. The third method, bidirectional long short-term memory with mel-frequency cepstral coefficients and autoencoder features for triplet loss (BLSTM-MFCCAE-TL), utilizes an autoencoder to extract additional AE features, which are then concatenated with MFCC and fed into the BLSTM model. The results showed that the performance of the BLSTM model was superior to the LSTM model, and the method of adding AE features achieved the best learning effect. Moreover, the proposed methods exhibit faster computation times compared to the reference GMM-HMM model. Therefore, utilizing pre-trained autoencoders for speaker encoding and obtaining AE features can significantly enhance the learning performance of speaker recognition. Additionally, it also offers faster computation time compared to traditional methods.
Keywords