Molecules (May 2022)
MIL-101 (Fe) @Ag Rapid Synergistic Antimicrobial and Biosafety Evaluation of Nanomaterials
Abstract
Metal-organic frameworks (MOFs), which have become popular in recent years as excellent carriers of drugs and biomimetic materials, have provided new research ideas for fighting pathogenic bacterial infections. Although various antimicrobial metal ions can be added to MOFs with physical methods, such as impregnation, to inhibit bacterial multiplication, this is inefficient and has many problems, such as an uneven distribution of antimicrobial ions in the MOF and the need for the simultaneous addition of large doses of metal ions. Here, we report on the use of MIL-101(Fe)@Ag with efficient metal-ion release and strong antimicrobial efficiency for co-sterilization. Fe-based MIL-101(Fe) was synthesized, and then Ag+ was uniformly introduced into the MOF by the substitution of Ag+ for Fe3+. Scanning electron microscopy, powder X-ray diffraction (PXRD) Fourier transform infrared spectroscopy, and thermogravimetric analysis were used to investigate the synthesized MIL-101(Fe)@Ag. The characteristic peaks of MIL-101(Fe) and silver ions could be clearly seen in the PXRD pattern. Comparing the diffraction peaks of the simulated PXRD patterns clearly showed that MIL-101(Fe) was successfully constructed and silver ions were successfully loaded into MIL-101(Fe) to synthesize an MOF with a bimetallic structure, that is, the target product MIL-101(Fe)@Ag. The antibacterial mechanism of the MOF material was also investigated. MIL-101(Fe)@Ag exhibited low cytotoxicity, so it has potential applications in the biological field. Overall, MIL-101(Fe)@Ag is an easily fabricated structurally engineered nanocomposite with broad-spectrum bactericidal activity.
Keywords