The Critical Role of Hypoxia in the Re-Differentiation of Human Articular Chondrocytes
Carlos Martinez-Armenta,
Carlos Suarez-Ahedo,
Anell Olivos-Meza,
María C. Camacho-Rea,
Laura E. Martínez-Gómez,
Guadalupe Elizabeth Jimenez-Gutierrez,
Gabriela A. Martínez-Nava,
Luis E. Gomez-Quiroz,
Carlos Pineda,
Alberto López-Reyes
Affiliations
Carlos Martinez-Armenta
Graduate Program in Experimental Biology, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
Carlos Suarez-Ahedo
Departamento de Reconstrucción Articular, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
Anell Olivos-Meza
Servicio de Medicina del Deporte y Ortopedia, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
María C. Camacho-Rea
Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, Mexico City 14080, Mexico
Laura E. Martínez-Gómez
Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
Guadalupe Elizabeth Jimenez-Gutierrez
Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
Gabriela A. Martínez-Nava
Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
Luis E. Gomez-Quiroz
Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
Carlos Pineda
Dirección General, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
Alberto López-Reyes
Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibara”, Mexico City 14389, Mexico
The preservation of the chondrogenic phenotype and hypoxia-related physiological microenvironment are major challenges in the 2D culture of primary human chondrocytes. To address this problem, we develop a 3D culture system generating scaffold-free spheroids from human chondrocytes. Our results highlight the chondrogenic potential of cultured human articular chondrocytes in a 3D system combined with hypoxia independently of the cartilage source. After 14 days of culture, we developed spheroids with homogenous diameter and shape from hyaline cartilage donors. Spheroids generated in hypoxia showed a significantly increased glycosaminoglycans synthesis and up-regulated the expression of SOX9, ACAN, COL2A1, COMP, and SNAI1 compared to those obtained under normoxic conditions. Therefore, we conclude that spheroids developed under hypoxic conditions modulate the expression of chondrogenesis-related genes and native tissue features better than 2D cultures. Thus, this scaffold-free 3D culture system represents a novel in vitro model that can be used for cartilage biology research.