Mathematics (Nov 2021)

Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane

  • Fouad Othman Mallawi,
  • Malik Zaka Ullah

DOI
https://doi.org/10.3390/math9222934
Journal volume & issue
Vol. 9, no. 22
p. 2934

Abstract

Read online

Nowadays, the problem of solar thermal absorption plays a vital role in energy storage in power plants, but within this phenomenon solar systems have a big challenge in storing and regulating energies at extreme temperatures. The solar energy absorber based on hybrid nanofluids tends to store thermal energy, and the hybrid nanofluids involve the stable scattering of different nano dimension particles in the conventional solvent at a suitable proportion to gain the desired thermophysical constraints. The authors focus on the behavior of the inclined plate absorber panel as the basic solution of water is replaced by a hybrid nanofluid, including Cu (Copper) and Al2O3 (Aluminum Oxide), and water is utilized as a base surfactant in the current investigation. The inclined panel is integrated into a porous surface with the presence of solar radiations, Joule heating, and heat absorption. The fundamental equations of the flow and energy model are addressed with the similarity transformations. The homotopy analysis method (HAM) via Mathematica software is used to explore the solution to this problem. Furthermore, the important physical characteristics of the rate of heat transfer, omission and absorption of solar radiation, and its impact on the solar plant are observed.

Keywords