Molecules (Sep 2020)

Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins

  • Diego Mauricio Sánchez-Osorno,
  • Diego Gomez-Maldonado,
  • Cristina Castro,
  • María Soledad Peresin

DOI
https://doi.org/10.3390/molecules25184041
Journal volume & issue
Vol. 25, no. 18
p. 4041

Abstract

Read online

The interactions between films of bacterial nanocellulose (BNC) and B complex vitamins were studied using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). Thin films of BNC were generated in situ by QCM-D, followed by real-time measurements of the vitamin adsorption. The desorption of vitamins was induced by rinsing the system using phosphate buffers at a pH of 2 and 6.5, emulating gastric conditions. Changes in frequency (which are proportional to changes in adsorbed mass, ∆m) detected by QCM-D were used to determine the amounts of vitamin adsorbed and released from the BNC film. Additionally, changes in dissipation (∆D) were proven to be useful in identifying the effects of the pH in both pristine cellulose films and films with vitamin pre-adsorbed, following its changes during release. The effects of pH on the morphology of the vitamin-BNC surfaces were also monitored by changes in rugosity from images obtained by atomic force microscopy (AFM). Based on this data, we propose a model for the binding phenomena, with the contraction on the relaxation of the cellulose film depending on pH, resulting in an efficient vitamin delivery process.

Keywords