Aerospace (Mar 2024)
Identification of Key Risk Hotspots in Mega-Airport Surface Based on Monte Carlo Simulation
Abstract
The complex layout of the airport surface, coupled with interrelated vehicle behaviors and densely mixed traffic flows, frequently leads to operational conflict risks. To address this issue, research was conducted on the recognition of characteristics and risk assessment for airport surface operations in mixed traffic flows. Firstly, a surface topological network model was established based on the analysis of the physical structure features of the airport surface. Based on the Monte Carlo simulation method, the simulation framework for airport surface traffic operations was proposed, enabling the simulation of mixed traffic flows involving aircraft and vehicles. Secondly, from various perspectives, including topological structural characteristics, network vulnerabilities, and traffic complexity, a comprehensive system for feature indices and their measurement methods was developed to identify risk hotspots in mixed traffic flows on the airport surface, which facilitated the extraction of comprehensive risk elements for any node’s operation. Finally, a weighting rule for risk hotspot feature indices based on the CRITIC–entropy method was designed, and a risk assessment method for surface operations based on TOPSIS–gray relational analysis was proposed. This method accurately measured risk indices for airport surface operations hotspots. Simulations conducted at Shenzhen Bao’an International Airport demonstrate that the proposed methods achieve high simulation accuracy. The identified surface risk hotspots closely matched actual conflict areas, resulting in a 20% improvement in the accuracy of direct risk hotspot identification compared to simulation experiments. Additionally, 10.9% of nodes in the airport surface network were identified as risk hotspots, including 3 nodes with potential conflicts between aircraft and ground vehicles and 21 nodes with potential conflicts between aircraft. The proposed methods can effectively provide guidance for identifying potential “aircraft–vehicle” conflicts in complex airport surface layouts and scientifically support informed decisions in airport surface operation safety management.
Keywords