Molecules (Apr 2024)

3-NAntC: A Potent Crotoxin B-Derived Peptide against the Triple-Negative MDA-MB-231 Breast Cancer Cell Line

  • Patricia Bezerra,
  • Eduardo F. Motti

DOI
https://doi.org/10.3390/molecules29071646
Journal volume & issue
Vol. 29, no. 7
p. 1646

Abstract

Read online

Breast cancer stands as the most prevalent type of tumor and a significant contributor to cancer-related deaths. Among its various subtypes, triple-negative breast cancer (TNBC) presents the worst prognosis due to its aggressive nature and the absence of effective treatments. Crotoxin, a protein found in the venom of Crotalus genus snakes, has demonstrated notable antitumor activity against aggressive solid tumors. However, its application has been hindered by substantial toxicity in humans. In efforts to address this challenge, Crotoxin B-derived peptides were synthesized and evaluated in vitro for their antitumor potential, leading to the discovery of 3-NAntC. Treatment with 3-NAntC at 1 µg/mL for 72 h notably reduced the viability of MDA-MB-231 cells to 49.0 ± 17.5% (p < 0.0001), while exhibiting minimal impact on the viability of HMEC cells (98.2 ± 13.8%) under the same conditions. Notably, 3-NAntC displayed superior antitumoral activity in vitro compared to cisplatin and exhibited a similar effect to doxorubicin. Further investigation revealed that 3-NAntC decreased the proliferation of MDA-MB-231 cells and induced G2/M phase arrest. It primarily prompted optimal cell death by apoptosis, with a lower incidence of the less desirable cell death by necrosis in comparison to doxorubicin. Additionally, 3-NAntC demonstrated low LDH release, and its cytotoxicity remained unaffected by the autophagy inhibitor 3-MA. In an in vivo zebrafish model, 3-NAntC exhibited excellent tolerability, showing no lethal effects and a low rate of malformations at high doses of up to 75 mg/mL. Overall, 3-NAntC emerges as a novel synthetic peptide with promising antitumor effects in vitro against TNBC cells and low toxicity in vivo.

Keywords