HortScience (Jul 2021)
Blue Light Monochromatic Irradiation for 12 Hours in Lighting Pattern with Combinations of Blue and Red Light Elongates Young Cos Lettuce Leaves and Promotes Growth under High Daily Light Integral
Abstract
Cos lettuce was grown under different spectral photon flux density distribution (SPFD) change patterns with blue- and/or red light-emitting diode (LED) irradiation with a 24-hour cycle. Twelve treatments were designed with a combination of four relative SPFD (RSPFD) change patterns and three photosynthetic photon flux density (PPFD) levels. The RSPFD change patterns were as follows: BR/BR, simultaneous blue- and red-light irradiation (BR) for 24 h; R/BR, red-light monochromatic irradiation (R) for 12 h followed by 12 hours of BR; B/BR, blue-light monochromatic irradiation (B) for 12 hours followed by 12 hours of BR; and B/R, 12 hours of B followed by 12 hours of R. Each RSPFD change pattern was conducted at three daily average photosynthetic photon flux densities (PPFDave) of 50, 100, and 200 µmol·m−2·s−1. The RSPFD change patterns that included B (B/BR and B/R) resulted in elongated leaves. A low ratio of active phytochrome to total phytochrome under B was considered the reason for leaf elongation. Shoot dry weight was significantly greater under the RSPFD change patterns that included B when the PPFDave was 200 µmol·m−2·s−1. The leaf elongation caused by B would have increased the amount of light received and thereby promoted growth. However, excessive leaf elongation caused the plants to fall, and growth was not promoted under the RSPFD change patterns that included B when the PPFDave was 50 µmol·m−2·s−1. Thus, 12-hour B promoted growth under conditions in which leaf elongation leads to increases in the amount of light received.
Keywords