Scientific Reports (Jan 2024)
Genesis of ectosymbiotic features based on commensalistic syntrophy
Abstract
Abstract The symbiogenetic origin of eukaryotes with mitochondria is considered a major evolutionary transition. The initial interactions and conditions of symbiosis, along with the phylogenetic affinity of the host, are widely debated. Here, we focus on a possible evolutionary path toward an association of individuals of two species based on unidirectional syntrophy. With the backing of a theoretical model, we hypothesize that the first step in the evolution of such symbiosis could be the appearance of a linking structure on the symbiont’s membrane, using which it forms an ectocommensalism with its host. We consider a commensalistic model based on the syntrophy hypothesis in the framework of coevolutionary dynamics and mutant invasion into a monomorphic resident system (evolutionary substitution). We investigate the ecological and evolutionary stability of the consortium (or symbiotic merger), with vertical transmissions playing a crucial role. The impact of the ‘effectiveness of vertical transmission’ on the dynamics is also analyzed. We find that the transmission of symbionts and the additional costs incurred by the mutant determine the conditions of fixation of the consortia. Additionally, we observe that small and highly metabolically active symbionts are likely to form the consortia.