BMC Cancer (Feb 2011)

Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma

  • Liu Yanxin,
  • Liu Shilian,
  • Ma Hong,
  • Xiang Yang,
  • Liu Zheng,
  • Jiang Minghong,
  • Zheng Dexian

DOI
https://doi.org/10.1186/1471-2407-11-54
Journal volume & issue
Vol. 11, no. 1
p. 54

Abstract

Read online

Abstract Background Adeno-associated virus-2 (AAV-2)-mediated gene therapy is quite suitable for local or regional application in head and neck cancer squamous cell carcinoma (HNSCC). However, its low transduction efficiency has limited its further development as a therapeutic agent. DNA damaging agents have been shown to enhance AAV-mediated transgene expression. Cisplatin, one of the most effective chemotherapeutic agents, has been recognized to cause cancer cell death by apoptosis with a severe toxicity. This study aims to evaluate the role of cisplatin in AAV-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and the effect on HNSCC both in vitro and in vivo. Methods Five human HNSCC cell lines were treated with recombinant soluble TRAIL (rsTRAIL) and infected with AAV/TRAIL to estimate the sensitivity of the cancer cells to TRAIL-induced cytotoxicity. KB cells were infected with AAV/EGFP with or without cisplatin pretreatment to evaluate the effect of cisplatin on AAV-mediated gene expression. TRAIL expression was detected by ELISA and Western blot. Cytotoxicity was measured by MTT assay and Western blot analysis for caspase-3 and -8 activations. Following the in vitro experiments, TRAIL expression and its tumoricidal activity were analyzed in nude mice with subcutaneous xenografts of HNSCC. Results HNSCC cell lines showed different sensitivities to rsTRAIL, and KB cells possessed both highest transduction efficacy of AAV and sensitivity to TRAIL among five cell lines. Preincubation of KB cells with subtherapeutic dosage of cisplatin significantly augmented AAV-mediated transgene expression in a heparin sulfate proteoglycan (HSPG)-dependent manner. Furthermore, cisplatin enhanced the killing efficacy of AAV/TRAIL by 3-fold on KB cell line. The AAV mediated TRAIL expression was observed in the xenografted tumors and significantly enhanced by cisplatin. AAV/TRAIL suppressed the tumors growth and cisplatin augmented the tumoricidal activity by two-fold. Furthermore, Combination treatment reduced cisplatin-caused body weight loss in nude mice. Conclusion The combination of AAV-mediated TRAIL gene expression and cisplatin had synergistic therapeutic effects on head and neck cancers and reduced the potential toxicity of cisplatin. These findings suggest that the combination of AAV/TRAIL and cisplatin may be a promising strategy for HNSCC therapy.