Molecular Imaging (Nov 2017)

Effect of Time-of-Flight and Regularized Reconstructions on Quantitative Measurements and Qualitative Assessments in Newly Diagnosed Prostate Cancer With F-Fluorocholine Dual Time Point PET/MRI

  • Spencer C. Behr MD,
  • Brett J. Mollard MD,
  • Jaewon Yang PhD,
  • Robert R. Flavell MD, PhD,
  • Randall A. Hawkins MD, PhD,
  • Youngho Seo PhD

DOI
https://doi.org/10.1177/1536012117736703
Journal volume & issue
Vol. 16

Abstract

Read online

Recent technical advances in positron emission tomography/magnetic resonance imaging (PET/MRI) technology allow much improved time-of-flight (TOF) and regularized iterative PET reconstruction regularized iterative reconstruction (RIR) algorithms. We evaluated the effect of TOF and RIR on standardized uptake values (maximum and peak SUV [SUV max and SUV peak ]) and their metabolic tumor volume dependencies and visual image quality for 18 F-fluorocholine PET/MRI in patients with newly diagnosed prostate cancer. Fourteen patients were administered with 3 MBq/kg of 18 F-fluorocholine and scanned dynamically for 30 minutes. Positron emission tomography images were divided to early and late time points (1-6 minutes summed and 7-30 minutes summed). The values of the different SUVs were documented for dominant PET-avid lesions, and metabolic tumor volume was estimated using a 50% isocontour and SUV threshold of 2.5. Image quality was assessed via visual acuity scoring (VAS). We found that incorporation of TOF or RIR increased lesion SUVs. The lesion to background ratio was not improved by TOF reconstruction, while RIR improved the lesion to background ratio significantly ( P < .05). The values of the different VAS were all significantly higher ( P < .05) for RIR images over TOF, RIR over non-TOF, and TOF over non-TOF. In conclusion, our data indicate that TOF or RIR should be incorporated into current protocols when available.