Drug Design, Development and Therapy (Jan 2009)

Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry

  • Klaus Braun,
  • Manfred Wiessler,
  • Volker Ehemann,
  • Ruediger Pipkorn,
  • Herbert Spring,
  • et al

Journal volume & issue
Vol. 2008, no. default
pp. 289 – 301

Abstract

Read online

Klaus Braun1, Manfred Wiessler1, Volker Ehemann2, Ruediger Pipkorn3, Herbert Spring4, Juergen Debus5, Bernd Didinger5, Mario Koch3, Gabriele Muller6, Waldemar Waldeck61German Cancer Research Center, Dept of Imaging and Radiooncology, Heidelberg, Germany; 2University of Heidelberg, Institute of Pathology, Heidelberg, Germany; 3German Cancer Research Center, Central Peptide Synthesis Unit, Heidelberg, Germany; 4German Cancer Research Center, Dept of Structural Analysis of Gene Structure and Function, Heidelberg, Germany; 5University of Heidelberg, Dept of Radiation Oncology, Heidelberg, Germany; 6German Cancer Research Center,Division of Biophysics of Macromolecules, Heidelberg, GermanyAbstract: Recurrent glioblastoma multiforme (GBM), insensitive against most therapeutic interventions, has low response and survival rates. Temozolomide (TMZ) was approved for second-line therapy of recurrent anaplastic astrocytoma. However, TMZ therapy in GBM patients reveals properties such as reduced tolerability and inauspicious hemogram. The solution addressed here concerning GBM therapy consolidates and uses the potential of organic and peptide chemistry with molecular medicine. We enhanced the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic TMZ. The TMZ connection to transporter molecules (TMZ-BioShuttle) was investigated, resulting in a much higher pharmacological effect in glioma cell lines and also with reduced dose rate. From this result we can conclude that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The TMZ-BioShuttle dramatically enhanced the potential of TMZ for the treatment of brain tumors and is an attractive drug for combination chemotherapy.Keywords: drug delivery, carrier molecules, facilitated transport, glioblastoma multiforme, temozolomide