Bulletin of Mathematical Sciences (Aug 2023)

Approximation of point interactions by geometric perturbations in two-dimensional domains

  • D. I. Borisov,
  • P. Exner

DOI
https://doi.org/10.1142/S1664360722500035
Journal volume & issue
Vol. 13, no. 02

Abstract

Read online

In this paper, we present a new type of approximation of a second-order elliptic operator in a planar domain with a point interaction. It is of a geometric nature that the approximating family consists of operators with the same symbol and regular coefficients on the domain with a small hole. At the boundary of it, Robin condition is imposed with the coefficient which depends on the linear size of a hole. We show that as the hole shrinks to a point and the parameter in the boundary condition is scaled in a suitable way, nonlinear and singular, the indicated family converges in the norm-resolvent sense to the operator with the point interaction. This resolvent convergence is established with respect to several operator norms and order-sharp estimates of the convergence rates are provided.

Keywords