Energies (Apr 2018)

A Practical Guide to Gaussian Process Regression for Energy Measurement and Verification within the Bayesian Framework

  • Jacques Maritz,
  • Foster Lubbe,
  • Louis Lagrange

DOI
https://doi.org/10.3390/en11040935
Journal volume & issue
Vol. 11, no. 4
p. 935

Abstract

Read online

Measurement and Verification (M&V) aims to quantify savings achieved as part of energy efficiency and energy management projects. M&V depends heavily on metered energy data, modelling parameters and uncertainties that govern the energy system under consideration. M&V therefore requires a stringent handle on the inherent uncertainties in the calculated savings. The Bayesian framework of data analysis in the form of non-parametric, nonlinear Gaussian Process (GP) regression provides a mechanism by which these uncertainties can be quantified thoroughly, and is therefore an attractive alternative to the more traditional frequentist approach. It is important to select appropriate kernels to construct the prior when performing GP regression. This paper aims to construct a guideline for a practical GP regression within the energy M&V framework. It does not attempt to quantify energy losses or savings, but rather presents a case study that could act as a road map for energy managers and M&V professionals to apply the GP regression as a Bayesian alternative to base-line adjustment. Special attention will be given to the selection of appropriate kernels for the application of baseline adjustment and energy savings quantification in a model-independent manner.

Keywords