MATEC Web of Conferences (Jan 2020)

Characterizing and Modeling the Precursors to Coarse Grain Formation during Beta-Annealing of Ti-6Al-4V

  • Pilchak A.L.,
  • Srivatsa S.,
  • Levkulich N.C.,
  • Sinha V.,
  • Payton E.J.,
  • Semiatin S.L.

DOI
https://doi.org/10.1051/matecconf/202032112007
Journal volume & issue
Vol. 321
p. 12007

Abstract

Read online

Coarse prior β grains exceeding 3 mm in diameter have been sporadically observed following β annealing of α+β forged titanium alloys. Recent work has shown that the occurrence of coarse grains may be due in part to the stabilization of a {001} texture during hot working that was further enhanced in intensity at the expense of other texture components during the early stages of β annealing. With the majority of the material comprised of low misorientation subgrains of a single texture component, the nuclei for coarse grains was the minority fraction of grains that were highly misoriented, and therefore had boundaries with higher energy and mobility, compared to the average grain. In this work, Ti-6Al-4V bar was side-pressed to various reductions in the α+β phase field to further investigate the role of texture and the effects of strain, strain-path, and deformation heating on the propensity to form abnormally large grains during β-annealing. The experiments were interpreted in the context of a continuum finite element model and viscoplastic self-consistent crystal plasticity simulations. Based on the results from experiment and modeling, we make recommendations with respect to the α+β forging process to avoid the occurrence of excessively coarse β grains.