Gels (Jul 2023)

Synthesis and Evaluation of Functionalized Polyurethanes for pH-Responsive Delivery of Compounds in Chronic Wounds

  • Zhongyan Li,
  • Matthew Crago,
  • Timothy Schofield,
  • Haoxiang Zeng,
  • Heema Kumari Nilesh Vyas,
  • Markus Müllner,
  • Anne Mai-Prochnow,
  • Syamak Farajikhah,
  • Sina Naficy,
  • Fariba Dehghani,
  • Sepehr Talebian

DOI
https://doi.org/10.3390/gels9080611
Journal volume & issue
Vol. 9, no. 8
p. 611

Abstract

Read online

Chronic wounds, depending on the bacteria that caused the infection, can be associated with an extreme acidic or basic pH. Therefore, the application of pH-responsive hydrogels has been instigated for the delivery of therapeutics to chronic wounds. Herein, with the aim of developing a flexible pH-responsive hydrogel, we functionalized hydrophilic polyurethanes with either cationic (polyethylene imine) or anionic (succinic anhydride) moieties. A comprehensive physicochemical characterization of corresponding polymers was carried out. Particularly, when tested in aqueous buffers, the surface charge of hydrogel films was closely correlated with the pH of the buffers. The loading of the cationic and anionic hydrogel films with various compound models (bromophenol blue; negatively charged or Pyronin Y; positively charged) showed that the electrostatic forces between the polymeric backbone and the compound model will determine the ultimate release rate at any given pH. The potential application of these films for chronic wound drug delivery was assessed by loading them with an antibiotic (ciprofloxacin). In vitro bacterial culturing was performed using Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results showed that at the same drug dosage, different release profiles achievable from cationic and anionic polyurethanes can yield different degrees of an antibacterial effect. Overall, our results suggest the potential application of cationic and anionic hydrophilic polyurethanes as flexible pH-responsive materials for the delivery of therapeutics to chronic wounds.

Keywords