Scientific Reports (Jun 2024)

Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting

  • Jiwoo Park,
  • Kangrok Oh,
  • Kyunghwa Han,
  • Young Han Lee

DOI
https://doi.org/10.1038/s41598-024-63824-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The purposes were to assess the efficacy of AI-generated radiology reports in terms of report summary, patient-friendliness, and recommendations and to evaluate the consistent performance of report quality and accuracy, contributing to the advancement of radiology workflow. Total 685 spine MRI reports were retrieved from our hospital database. AI-generated radiology reports were generated in three formats: (1) summary reports, (2) patient-friendly reports, and (3) recommendations. The occurrence of artificial hallucinations was evaluated in the AI-generated reports. Two radiologists conducted qualitative and quantitative assessments considering the original report as a standard reference. Two non-physician raters assessed their understanding of the content of original and patient-friendly reports using a 5-point Likert scale. The scoring of the AI-generated radiology reports were overall high average scores across all three formats. The average comprehension score for the original report was 2.71 ± 0.73, while the score for the patient-friendly reports significantly increased to 4.69 ± 0.48 (p < 0.001). There were 1.12% artificial hallucinations and 7.40% potentially harmful translations. In conclusion, the potential benefits of using generative AI assistants to generate these reports include improved report quality, greater efficiency in radiology workflow for producing summaries, patient-centered reports, and recommendations, and a move toward patient-centered radiology.

Keywords