A comparative study of bacterial diversity based on effects of three different shade shed types in the rhizosphere of Panax quiquefolium L.
Xianchang Wang,
Xu Guo,
Lijuan Hou,
Jiaohong Zhang,
Jing Hu,
Feng Zhang,
Jilei Mao,
Zhifen Wang,
Congjing Zhang,
Jinlong Han,
Yanwei Zhu,
Chao Liu,
Jinyue Sun,
Chenggang Shan
Affiliations
Xianchang Wang
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Xu Guo
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Lijuan Hou
Weihai Academy of Agricultural Sciences, Weihai, China
Jiaohong Zhang
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Jing Hu
Weihai Academy of Agricultural Sciences, Weihai, China
Feng Zhang
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Jilei Mao
Weihai Academy of Agricultural Sciences, Weihai, China
Zhifen Wang
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Congjing Zhang
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Jinlong Han
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Yanwei Zhu
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Chao Liu
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Jinyue Sun
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Chenggang Shan
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Research Center of Medicinal Plant, Shandong Academy of Agricultural Sciences/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
Background Shading is an important factor affecting the cultivation of American ginseng, as it influences crop quality and yield. Rhizosphere microorganisms are also crucial for normal plant growth and development. However, whether different shade types significantly change American ginseng rhizosphere microorganisms is unknown. Methods This study evaluated the rhizosphere soils of American ginseng under traditional, high flag and high arch shade sheds. High-throughput 16S rRNA gene sequencing determined the change of rhizosphere bacterial communities. Results The microbial diversity in rhizosphere soils of American ginseng significantly changed under different shading conditions. The bacteria diversity was more abundant in the high arch shade than flat and traditional shades. Different bacterial genera, including Bradyrhizobium, Rhizobium, Sphingomonas, Streptomyces and Nitrospira, showed significantly different abundances. Different shading conditions changed the microbial metabolic function in the American ginseng rhizosphere soils. The three types of shade sheds had specific enriched functional groups. The abundance of ATP-binding cassette (ABC) transporters consistently increased in the bacterial microbiota. These results help understand the influence of shading systems on the rhizosphere microecology of American ginseng, and contribute to the American ginseng cultivation.