Nuclear Fusion (Jan 2024)

Gyrokinetic simulations of electrostatic microturbulence in ADITYA-U tokamak with argon impurity

  • Tajinder Singh,
  • Kajal Shah,
  • Deepti Sharma,
  • Joydeep Ghosh,
  • Kumarpalsinh A. Jadeja,
  • Rakesh L. Tanna,
  • M.B. Chowdhuri,
  • Zhihong Lin,
  • Abhijit Sen,
  • Sarveshwar Sharma,
  • Animesh Kuley

DOI
https://doi.org/10.1088/1741-4326/ad5a20
Journal volume & issue
Vol. 64, no. 8
p. 086038

Abstract

Read online

The effect of impurity on the electrostatic microturbulence in ADITYA-U tokamak is assessed using global gyrokinetic simulations. The realistic geometry and experimental profiles of the ADITYA-U are used, before and after argon gas seeding, to perform the simulations. Before the impurity seeding, the simulations show the existence of the trapped electron mode (TEM) instability in three distinct regions on the radial-poloidal plane. The mode is identified by its linear eigenmode structure and its characteristic propagation in the electron diamagnetic direction. The simulations with Ar ^1+ impurity ions in the outer-core region show a significant reduction in the turbulence and transport due to a reduction in the linear instability drive, with respect to the case without impurity. A decrease in particle and heat transport in the outer-core region modifies the plasma density profile measured after the impurity seeding. It, thus, results in the stabilization of the TEM instability in the core region. Due to the reduced turbulence activity, the electron and ion temperatures in the central region increase by about 10%.

Keywords