Discrete Dynamics in Nature and Society (Jan 2011)
Bivariate EMD-Based Data Adaptive Approach to the Analysis of Climate Variability
Abstract
This paper presents a data adaptive approach for the analysis of climate variability using bivariate empirical mode decomposition (BEMD). The time series of climate factors: daily evaporation, maximum and minimum temperatures are taken into consideration in variability analysis. All climate data are collected from a specific area of Bihar in India. Fractional Gaussian noise (fGn) is used here as the reference signal. The climate signal and fGn (of same length) are combined to produce bivariate (complex) signal which is decomposed using BEMD into a finite number of sub-band signals named intrinsic mode functions (IMFs). Both of climate signal as well as fGn are decomposed together into IMFs. The instantaneous frequencies and Fourier spectrum of IMFs are observed to illustrate the property of BEMD. The lowest frequency oscillation of climate signal represents the annual cycle (AC) which is an important factor in analyzing climate change and variability. The energies of the fGn's IMFs are used to define the data adaptive threshold to separate AC. The IMFs of climate signal with energy exceeding such threshold are summed up to separate the AC. The interannual distance of climate signal is also illustrated for better understanding of climate change and variability.